1,209 research outputs found

    Enhancing market-oriented R&D planning by integrated market and patent portfolios

    Full text link
    Marketing and R&D strategies need to be aligned to increase the return from investment in new technologies. Various portfolio techniques have been widely used to support strategic planning. A new portfolio approach integrating market and technology portfolios to support market-oriented R&D planning is developed. The integrated portfolio is based on objective market and patent data and empirical evidence that the respective portfolio dimensions impact a company’s business performance. This contributes significantly to the relevance of the proposed integrated portfolio approach for strategic planning. It is tested in a practical application in the chemical industry. Based on these experiences, a set of recommendations for the effective use of the integrated portfolio for market-orientated strategic R&D planning is derived

    ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-ÎČ)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-ÎČ/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC

    Evaluation of data-based estimates of anthropogenic carbon in the Arctic Ocean

    Get PDF
    The Arctic Ocean is particularly vulnerable to ocean acidification, a process that is mainly driven by the uptake of anthropogenic carbon (Cant) from the atmosphere. Although Cant concentrations cannot be measured directly in the ocean, they have been estimated using data-based methods such as the transient time distribution (TTD) approach, which characterizes the ventilation of water masses with inert transient tracers, such as CFC-12. Here, we evaluate the TTD approach in the Arctic Ocean using an eddying ocean model as a test bed. When the TTD approach is applied to simulated CFC-12 in that model, it underestimates the same model's directly simulated Cant concentrations by up to 12%, a bias that stems from its idealized assumption of gas equilibrium between atmosphere and surface water, both for CFC-12 and anthropogenic CO2. Unlike the idealized assumption, the simulated partial pressure of CFC-12 (pCFC-12) in Arctic surface waters is undersaturated relative to that in the atmosphere in regions and times of deep-water formation, while the simulated equivalent for Cant is supersaturated. After accounting for the TTD approach's negative bias, the total amount of Cant in the Arctic Ocean in 2005 increases by 8% to 3.3 ± 0.3 Pg C. By combining the adjusted TTD approach with scenarios of future atmospheric CO2, it is estimated that all Arctic waters, from surface to depth, would become corrosive to aragonite by the middle of the next century even if atmospheric CO2 could be stabilized at 540 ppm

    Breast cancer cells adapt contractile forces to overcome steric hindrance

    Get PDF
    Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance

    NEDD9 Stabilizes Focal Adhesions, Increases Binding to the Extra-Cellular Matrix and Differentially Effects 2D versus 3D Cell Migration

    Get PDF
    The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 −/− MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9−/− MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9−/− MEFs have decreased adhesion to fibronectin, despite upregulated α5ÎČ1 fibronectin receptor expression. We find that ÎČ1 integrin activation is significantly suppressed in the NEDD9−/−, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.NHMRC Project Grants 512551 and 63251

    NEDD9 Stabilizes Focal Adhesions, Increases Binding to the Extra-Cellular Matrix and Differentially Effects 2D versus 3D Cell Migration

    Get PDF
    The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 −/− MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9−/− MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9−/− MEFs have decreased adhesion to fibronectin, despite upregulated α5ÎČ1 fibronectin receptor expression. We find that ÎČ1 integrin activation is significantly suppressed in the NEDD9−/−, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.NHMRC Project Grants 512551 and 63251

    Bladder cancer and occupational exposures

    Get PDF
    A hospital-based cas-referent study was carried out in Lyon with the purpose of generating hypotheses about the role of occupational exposures to 320 compounds in bladder carcinogenesis. Job histories were obtained by questionnaire for 116 cases and 232 reference patients with diseases other than cancer (one referent from the same hospital ward and one from another ward of the same hospital per case) ; the referents were matched for gender, hospital, age, and nationality. Systematic coding of exposures, with a blind analysis of job histories, was carried out by a team of experts in chemistry and occupational health. Significantly elevated odds ratios were observed for exposure to pyrolysis and combustion products [odds ratio (OR) 2.3, 95 % confidence interval (95 % CI) 1.0-4.0] when the general referents were used and for cutting fluids (OR 2.6, 95 % CI 1.2-5.4) when tobacco consumption was adjusted for. The latter was highest among the category consisting of blue-collar and unskilled workers, supervisors, and agricultural workers (OR 4.6, 95 % CI 2.0-10.6), while the odds ratio for the other category was 0.8 (95 % CI 0.3-2.7). An elevated odds ratio for exposure to inks was observed for the women (OR 14.0, 95 % CI 1.8-106.5) on the basis of 14 exposed cases, but confounding factors could have been responsible for this result. Odds ratios for several other exposures (rubber : OR 5.7, nitrates : OR 8.2, coke dust : OR 3.5, meat additives : OR 3.8) were also elevated, but not significantly so when based on a small number of exposed cases. The observations of this investigation should be tested in future studies, in particular since exposures to agents such as cutting fluids or pyrolysis products are ubiquitous in industrial settings and may present an important public health hazard. (Résumé d'auteur
    • 

    corecore